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Abstract
The effect of entanglement sudden death (ESD) can arise when entangling
interactions convert purely bipartite entangled states into more generally
entangled states. As a result, ESD can also be seen as a function of partitioning
of the system, not just of time, as the system partitioning defines different
(multipartite) entanglement classes. Computing both geometric entanglement
hierarchies and the generalization of concurrence allows one to demonstrate that
different methods of analysing quantum correlations provide both qualitative
and quantitatively different descriptions of two commonly cited examples of
ESD. These results follow directly from the inequivalence of entanglement and
quantum correlations, the latter of which can exist in a state without the former.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Bg, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When considering the behaviour of finite state quantum systems, one usually encounters
one of two characteristic types of time evolution. The state of the system may undergo
oscillatory behaviour, with characteristic frequencies given by the eigenvalues of the system
Hamiltonian, which is characteristic of coherent evolution; alternatively, the system can
undergo exponential damping due to its interaction with the environment, the result being
decoherence of the system. Recently, the phenomenon of ‘entanglement sudden death’ (ESD)
has been investigated, in which the bipartite entanglement between a pair of two-state systems
displays neither behaviour, but instead disappears at some finite time due to decoherence
acting on each system independently. In this paper we investigate the link between ESD and
multipartite entanglement. In pursuing this link, we are able to comment on entanglement
invariants and ESD, show the equivalence of the two canonical examples of ESD, investigate
the link between entanglement and correlations and show that ESD can also occur as a function
of subsystem partitioning, rather than time.
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The fact that a partially mixed state can evolve from finite to zero entanglement without
becoming completely mixed has been known for some time [1–3]. This concept has been
distilled into concrete examples and is referred to as the sudden death (or birth) of entanglement
[4–20]. There are two canonical systems in which entanglement sudden death is discussed.
The most striking example consists of a pair of two-level atoms, initially in some entangled
state, undergoing spontaneous emission into the environment. These atoms have no interaction
between them but are initialized in the (partially entangled) state1

|φ〉 = cos θ |gg〉 + sin θ |ee〉 (1)

where θ parameterizes the fraction of ground (g) and excited (e) states of the atoms. The
atoms undergo independent spontaneous emission, modelled using Lindblad [21, 22] or Kraus
[21, 23] operators, or similar formalism. For θ � π/4, the entanglement between the atoms
decays exponentially with a decay rate equal to �. In contrast, when θ > π/4, the entanglement
disappears at a finite time [7, 13], given by td = −ln[1 − cot θ ]/�. A state which displays
this ESD is referred to as a ‘fragile’ state [4].

A second example system in which entanglement sudden birth and death is observed
[6, 10] is the Jaynes–Cummings (JC) system, which is well known from the study of strongly
coupled atoms in cavities [24]. Consider a pair of two-level atoms, each contained in a
strongly coupled cavity where neither the atoms nor the cavities interact. In this case the
system undergoes cycles of entanglement death and birth, even though the evolution of the
system is entirely coherent.

Throughout this paper we use the basis |ψ〉 = |at(1)〉 ⊗ |ph(1)〉 ⊗ |at(2)〉 ⊗ |ph(2)〉 where
|at〉 consists of the ground and excited states of the atom, |g〉 and |e〉, and the photon mode
|ph〉 can be occupied |1〉 or unoccupied |0〉. The atoms are initialized in the state

|ψ〉 = cos θ |g 0 g 0〉 + sin θ |e 0 e 0〉 (2)

where θ parameterizes the fragility of the state. The evolution of each atom–cavity pair is
governed by the standard Jaynes–Cummings Hamiltonian,

HJC = Eσ+σ− + ωa†a + J (a†σ− + aσ+), (3)

where σ acts on the atom, a acts on the photon mode and J is the coupling strength in units
such that h̄ = 1. We take E = ω and assume that the atoms and photons form a closed system
and therefore ignore other decohering effects. Given this initial state, equation (2), we can
write down explicitly the time evolution:

|ψ(θ, t)〉 = cos θ |g 0 g 0〉 + sin θ

[
cos2(J t)|e 0 e0〉 − sin2(J t)|g 1 g 1〉

− i sin(2J t)

2
(|g 1 e 0〉 + |e 0 g 1〉)

]
. (4)

The population of the system oscillates between the atom and photon degrees of freedom
with a period given by J. The entanglement between the atoms and the cavity photon modes
also oscillates as the populations oscillate [6]. For certain values of θ , the entanglement can
disappear for an appreciable fraction of the cycle before returning. Figure 1(a) shows the
concurrence [25] between the atoms and the photons as a function of time. The interesting
region is halfway through one of these cycles where both the atoms and the photons carry some
entanglement, but the sum of this entanglement does not add up to that initially contained in the
atoms. Figure 1(b) shows the various concurrences for θ = 2π/5. Note the extended periods
where both the concurrence between atoms and photons is zero, even though the system is
completely coherent.

1 This initial state comes from [7, 13] but displays all the effects discussed in the mixed state version [4].
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Figure 1. Evolution of entanglement for the JC model. (a), |ψ(π/4, t)〉, shows the entanglement
reaching zero periodically for both atoms (dash line) and photons (dotted line), even though there
is no interaction between the atoms and the photons. (b) demonstrates the same evolution for the
state |ψ(2π/5, t)〉. The concurrences between atoms and photons is zero for finite time periods,
even though the evolution is entirely coherent. The four-particle concurrence (dashed–dotted line)
can be used to define an invariant (solid line).

We now investigate the properties of the JC example, the ESD behaviour of which
has been extensively studied [6, 10], with particular focus on the multipartite entanglement
characteristics. The analysis of the movement of entanglement between groups of spins
has been extensively studied in the context of entanglement transfer [26–29] but here we
specifically make connections between these ideas and those of ESD. Our results will
additionally prove to be applicable to the first (spontaneous emission) example.

We first ask a very important question: What does the four-particle entanglement of the
system look like as a function of time? A system comprising three qubits can be entangled
in two non-equivalent classes [30], the canonical W and GHZ classes, which cannot be
interconverted using only stochastic local operations and classical communication (SLOCC).
In the case of four particles, there are several non-equivalent classes under SLOCC [31–35],
although their exact number and boundaries are still a source of some debate.

We will start by classifying the case of θ = π/4, which displays transitory ESD, see
figure 1(a). The initial state |ψ(π/4, 0)〉 consists of 1 EPR pair shared between the atoms.
After one half cycle (t = π/2J ), the EPR pair is now swapped to the photons. These
states, |ψ(π/4, 0)〉 and |ψ(π/4, π/2J )〉, are equivalent under exchange of the atom/photon
degrees of freedom and belong to the class La2b2 according to Verstraete et al [31] or
the degenerate class 0204	13 according to Lamata et al [32, 33]. The more interesting
state between these two is |ψ(π/4, π/4J )〉, which demonstrates a reduction in the total
bipartite entanglement and corresponds to the class Labc2 or span{01	23, GHZ} respectively.
We see immediately that the system is changing the (global) entanglement class as it evolves
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in time through the interaction between local pairs of particles (in this case atom–photon
pairs). The different four-particle entanglement classes have different degrees of ‘visibility’
when measured with a bipartite measure. This provides us with an alternative interpretation of
ESD, as the Hamiltonian evolution between multipartite entanglement classes with different
visibility to bipartite entanglement.

2. Spontaneous emission

We now turn our attention to the first cited example of ESD, that of two entangled atoms
undergoing spontaneous emission. For this example, we use the Weisskopf–Wigner (WW)
theory of spontaneous emission which involves a coherent description of an atom interaction
with an infinite number of vacuum modes [24, 36]. For simplicity, we will consider only modes
which differ in frequency and ignore the angular and dipole element dependence. Using this
simplified model [13], the Hamiltonian of a single atom/photon system is

HWW = Eσ+σ− +
N∑
k

ωka
†
kak +

N∑
k

Jk

(
a
†
kσ− + akσ+

)
(5)

for an atom coupled to N vacuum modes.
The solution to the Schrödinger equation under this Hamiltonian takes the form

|
t 〉 = ξ(t)|e〉|0〉 +
N∑

k=1

λk(t)|g〉|1k〉, (6)

where |0〉 is the empty vacuum state (assuming zero temperature environment). In the limit
N → ∞, ξ(t) = exp(−�t), giving the usual exponential decay for an atom emitting into
the vacuum. We then define a collective mode |γ 〉 such that |
t 〉 = ξ(t)|e〉|0〉 + χ(t)|g〉|γ 〉.
A direct mapping between the WW and JC examples is given by setting ξ(t) = cos(J t) and
χ(t) = −i sin(J t).

Our pair of atoms emitting into space from equation (1) is then described by the state

|φ〉 = cos θ |g0〉(1) ⊗ |g0〉(2) + sin θ |
t 〉(1) ⊗ |
t 〉(2), (7)

where subscripts (1) and (2) refer to atoms 1 and 2 respectively and their associated photon
modes. Tracing out either the atom or collective photon modes results in ESD between atoms
or photons [13], as can be seen in figure 2. Moreover, if we define |
t 〉 as a moving basis
state, then the entanglement between |
t 〉(1) and |
t 〉(2) is trivially constant in time. Given
the direct mapping, this solution (and subsequent results in section 5) takes the same form as
the JC case and we therefore concentrate on our original JC example for most of the following
work.

3. Hierarchies of geometric entanglement

While categorization allows one to see that the system is evolving between inequivalent classes,
it is possible to be more quantitative. Using ‘hierarchies of geometric entanglement’, one can
also quantify the various contributions to the multipartite state [37, 38]. The advantage of
computing an entanglement hierarchy is that the various contributions can be quantified as a
function of 2-, 3- and 4-partite entanglement as well as the dependence on how the system is
partitioned.

In order to compute an entanglement hierarchy, we define a set of K-separable states of
an N-qubit system (K � N ). In general, for values of K < N , there will be several different
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Figure 2. Evolution of entanglement for the WW model, with identical labelling to
figure 1. (a), |ψ(π/4, t)〉, shows the entanglement between the atoms decaying over time, while the
entanglement between the emitted photons increases, as the excitation is swapped into the photon
modes. (b) demonstrates the same evolution for the state |ψ(2π/5, t)〉, where the entanglement
between atoms disappears at td and the entanglement between photons appears at tb. The 4-partite
concurrence rises and falls, reflecting the distribution of entanglement between all the degrees of
freedom. As in the JC case, we see that equation (14) forms an invariant of the evolution.

possible partitions where Q1|Q2| . . . |QK defines a particular partitioning of the system. A
familiar example for three qubits is that one can partition the system into one tripartite system
(K = N = 3) or three different arrangements of one qubit and one bipartite system (K = 2).
We then take a general pure state |
〉 which is defined by the set of all the K-separable states,
SK(Q1|Q2| . . . |QK), associated with a fixed partition, K . Calculating the overlap of such
a state with the state in question |ψ〉 allows us to define the relative (partition dependent)
geometric measure of entanglement

E
(K)
RGE(Q1|Q2| . . . |QK) = 1 − �2

K(Q1|Q2| . . . |QK), (8)

where

�2
K(Q1|Q2| . . . |QK) = max

|
〉∈SK(Q1|Q2|...|QK)
|〈
|ψ〉|2. (9)

The absolute (partition independent) geometric measure of entanglement is then defined by
performing the maximization over all of the possible partitions, SK, for a given value of K such
that

E
(K)
AGE(|ψ〉) = 1 − �2

K(|ψ〉), (10)

where

�2
K(|ψ〉) = max

|
〉∈SK

|〈
|ψ〉|2. (11)
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AGE(1 1 1 1) as a function of θ showing the asymmetry of either

side of θ = π/4. For values of θ > π/4, the action of the JC interaction is to convert the initial
bipartite entanglement into more general multipartite correlations.

The hierarchy of geometric entanglement is then defined by comparing the various
contributions, E

(2)
AGE � E

(3)
AGE � · · · � E

(N)
AGE. In this hierarchy, E

(N)
AGE contains the

total entanglement of the system, whereas E
(N−1)
AGE contains all except the bipartite. The

bipartite component is then computed by subtracting the outer level from the following
one

(
E

(N)
AGE − E

(N−1)
AGE

)
. This recursion continues until E

(2)
AGE, which measures the N-partite

entanglement of the system. As an example, a four-qubit state with E
(2)
AGE = E

(3)
AGE = E

(4)
AGE

contains only 4-partitie entanglement, whereas a state with E
(2)
AGE = E

(3)
AGE < E

(4)
AGE contains

4- and 2-partitie entanglement. More details on the computation and interpretation of
entanglement hierarchies can be found in [38].

In this and subsequent sections, we use the notation A1P1|A2P2 to indicate a partition
which groups each atom and photon mode together, whereas A1A2|P1P2 defines a partition
grouping the two atoms together and the two photon modes together, forming separate atom–
atom and photon–photon subsystems. Throughout it is also assumed that the state of the
system is given by equation (4) and therefore only a function of θ and t.

Using entanglement hierarchies, we can make several important observations. First, we
plot the value of E

(4)
AGE(|ψ(θ, t)〉) for different values of θ , see figure 3. We immediately see

the asymmetry with respect to θ , where E
(4)
AGE(|ψ(θ, t)〉) is a constant as a function of time for

θ � π/4. For θ > π/4 we see the total entanglement (4-, 3- and 2-partite) increase and then
decrease as a function of time, corresponding to the JC interaction taking the initial bipartite
entanglement and converting it to more complicated entangled states. The asymmetry with
respect to θ corresponds exactly with the asymmetry of ESD with respect to θ .

In figure 4, we investigate the ESD region more precisely by plotting the various values
of the absolute geometric entanglement as a function of time, for θ = 2π/5. We see the
conversion of bipartite entanglement into 4-partite entanglement as well as the generation of
a large fraction of 2- and 3-partite entanglement. The total amount of available 4-partitie
entanglement is limited by the amount of bipartite entanglement initially available, as one
might expect.
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Figure 5. Relative geometric entanglement for the partitions, E
(2)
RGE(2|2), which group the system

into pairs. We see that for the partition, which separates the atom–photon pairs, the entanglement is
constant, as expected. For other partitions, we see the cyclic increase and decrease in entanglement
associated with the action of the Jaynes–Cummings evolution between atoms and photons. In this
figure, as with the previous examples θ = 2π/5, which is well within the ESD region.

In order to understand partition-dependent effects, we plot the relative geometric
entanglement E

(2)
RGE(|ψ(2π/5, t)〉) for three inequivalent partitions in figure 5. The geometric

entanglement associated with the partition which groups each atom–photon pair, A1P1|A2P2, is
constant. This is consistent with the observation that this is a closed system with no interaction
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Figure 6. Quantum discord as a function of time, computed for three state angles and two different
partitions. For the partition A1P1|A2P2 we see that the discord does not change with time and is
purely a function of the state angle θ . The partition A1A2|P1P2 captures the creation and then
removal of correlations between atoms and photons.

terms between the atoms and the photons. In contrast, the other partitions show a marked
increase during the JC oscillation.

It is important to note that, while geometric entanglement hierarchies aids our
understanding of the evolution of the system, at no point does either the absolute nor the
relative geometric entanglement reach zero with a discontinuous derivative (i.e. displays
ESD). It has also been noted by other authors [17] that such a mismatch also occurs when
comparing concurrence and Bell-inequality violations as measures of non-classical behaviour.
This suggests that concurrence is somehow ‘special’ in this regard.

4. Quantum correlations

In fact, what is special about concurrence is that it measures separability of the system rather
than the extent of correlations. As a mixed state of two qubits can contain zero entanglement
but nonzero quantum correlations (as typified by the Werner states [39, 40]), we must also
consider the role of quantum correlations. In order to measure the quantum correlations
of the system, we use quantum discord [40–42], Q(ρ), which is a measure of the quantum
correlations between two parties whose combined state is given by ρ.

For the JC system, it is natural to compute quantum discord for two inequivalent partitions,
one consisting of two atoms and two photons (A1A2|P1P2), and the other comprising atom–
photon pairs (A1P1|A2P2).2 In figure 6, we plot the quantum discord for both these partitions
for several different values of θ . For the partition A1P1|A2P2 we see that the discord does
not change with time and is purely a function of the state angle θ . It reaches a maximum
of Q(A1P1|A2P2) = 1 (one ebit) at θ = π/4, where this correspond to one Bell state shared

2 The third inequivalent partition (A1P2|A2P1) displays similar behaviour to A1P1|A2P2, smoothly increasing until
reaching a maximum halfway through the cycle, followed by a symmetric decrease. This can be seen in figure 5, but
equivalent results are found when computing concurrence [6, 9, 10, 13].
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between the atom–photon pairs. The discord is also symmetric about θ = π/4, as we expect
as there is no interaction which crosses this partition. The quantum discord is measuring the
initial quantum correlations between the atoms, which are then smoothly transferred to the
photons. This case corresponds exactly to the ‘trivial’ partitioning discussed earlier.

The partition A1A2|P1P2 captures the creation and then removal of correlations between
atoms and photons. As the photons have no initial population (and the atoms have no
population after one half cycle) for this choice of partition, the quantum discord is zero at the
extrema. The quantum correlations reach a maximum halfway through the cycle, the value of
which depends on θ . These are the correlations directly generated by the J–C interaction and
depend accordingly on θ , varying from a zero (no correlation between atom and photon) to
a maximum of Q(A1A2|P1P2) = 2 when θ = π/2. In this limit, there is no initial quantum
correlation or entanglement between the atoms and the two JC pairs evolve independently,
producing two independent bell pairs, resulting in one ebit of entropy each.

Computing the quantum discord tracks the evolution of the correlations in the system.
Even within an ESD region where the system is separable, there are still nonzero quantum
correlations between the subcomponents. The results from the geometric hierarchies can
also be interpreted as measuring the total quantum correlations of the system, not just the
entanglement3, and therefore do not drop to zero with a discontinuous derivative. Furthermore,
the ESD region can be directly identified with a region of state space where the state of the
system is separable but still posses quantum correlations, which in turn is intimately linked to
the concept of subsystem partitioning.

5. Concurrence and invariants

We now return to using concurrence [25] as a measure of entanglement which has both a
pure state and a mixed state definition. The concurrence of a pure state |	〉 is given by
C(	) = |〈	|	̃〉| where |	̃〉 is the ‘spin-flipped’ state |	̃〉 = σy ⊗ σy |	∗〉. For a mixed state,
C(ρ) = max[0,Q(ρ)] where Q(ρ) = √

λ1 −√
λ2 −√

λ3 −√
λ4 is an auxiliary function of the

eigenvalues of the spin-flipped density matrix ρσy ⊗σyρ
∗σy ⊗σy , where both the conjugation

and σy are defined in the basis of interest. As has been previously noted [10, 19], the region of
ESD coincides with Q(ρ) < 0 for the reduced density matrix of the atoms (or photons). It is
this region in which the value of the auxiliary function is reflecting the quantum correlations
of the system, even though the system is separable.

We now consider the four-particle generalization of concurrence (or 4-tangle) as a
quantitative entanglement measure [43, 44]. This measure is constructed in an analogous
way to bipartite concurrence, where |	̃〉 = σ⊗n

y |	∗〉 for an n-qubit state. For clarity, we
will define Cij (	) as the bipartite concurrence between the ith and j th degree-of-freedom
while tracing over the others, whereas C4(	) is the four-particle concurrence of the entire
atom–photon system. In our JC example, the four-particle concurrence is

C4[ψ(θ, t)] = sin2 θ sin2(2J t)

2
. (12)

Taking the time-dependent state, |ψ(θ, t)〉 for θ � π/4 and calculating the concurrence
of the atoms and photons, CAA(t) and CPP(t) respectively, we find

CAA[ψ(θ, 0)] = CAA[ψ(θ, t)] + CPP[ψ(θ, t)] + C4[ψ(θ, t)]

= sin(2θ), θ � π/4, (13)

3 The use of the term entanglement hierarchy is therefore rather confusing, but this convention is maintained here
for continuity.
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valid for all time, t. This suggests that the sum of the concurrence shared between the atoms, the
photons and four-particle concurrence equals the initial concurrence in the system, implying
that the ‘missing’ entanglement is indeed four-particle entanglement. This effect is illustrated
graphically in figure 1(a) where the bipartite concurrences, four-particle concurrence and
equation (13) are plotted. It is tempting to conclude that in equation (13) we have found an
entanglement invariant but a little further calculation shows that this is not the case. In fact,
it is exactly the regime that displays complete ESD (θ > π/4) for which this relation is not
valid.

The solution (as was hinted at by previous authors [7, 10, 19]) is to use the auxiliary
function QAA[ρ(t)], rather than CAA[ρ(t)], as this function has a nontrivial negative
component in the ESD region, resulting from the quantum correlations. Performing the
necessary algebra, we find that indeed

�[θ, t] = QAA[ψ(θ, t)] + QPP[ψ(θ, t)] + C4[ψ(θ, t)]

= sin(2θ)

= QAA[ψ(θ, t = 0)], (14)

for all t and θ , where we trace over unwanted qubits as required4. This supports the
interpretation of the interplay between the bipartite entanglement and the multipartite
entanglement, although the quantitative prediction of ESD is unique to concurrence (and
similar measures such as negativity) as no such behaviour is seen within the geometric
entanglement hierarchies or quantum discord. We also note that this invariant result is in
direct contrast to that given in the erratum to [45]. In that work, they chose a partitioning
which groups the atom–photon pairs, resulting in trivially constant entanglement between the
pairs, as we also saw in section 3 when computing E

(2)
RGE(A1P1|A2P2).

6. ‘Sudden’ death via partitioning

This dependence of ESD results on the partitioning of the system should come as no surprise,
as the very notion of quantum entanglement is directly linked with the tensor product structure
and the concept of partitioning [46]. To illustrate this, we return once more to the example of
atoms spontaneously emitting into the vacuum. Using WW theory, we are free to define our
boundaries between the system and the environment arbitrarily and therefore we can use this
to explore the correspondence between time evolution (with fixed partitions) and movement
of the system partition (at fixed time). Taking the state from equation (6), we redefine it into
atom, collective state and environmental modes:

|
t 〉 = ξ(t)|e〉|0〉 +
N∑

k∈K

λk(t)|g〉|1k〉 +
N∑

k /∈K

λk(t)|g〉|1k〉

= ξ(t)|e〉|0〉|0〉 + χ ′(t)|g〉|γK〉|0〉
+

√
1 − |ξ(t)|2 − |χ ′(t)|2|g〉|0〉|env〉 (15)

where k ∈ K is the set of modes that we consider part of a collective mode |γK〉 which can
be entangled with either the atom or the other photon. The remaining photon modes, k /∈ K ,
are to be considered environmental modes and will be traced over. Taking our example of
two atoms in the state given by equation (7), we consider our ‘system’ to consist of only those
photons belonging to set K(1) for atom 1 and K(2) for atom 2. For clarity of presentation, we
will also take the long-time limit such that

|
∞〉 ≈ |g〉 ⊗ (χ ′(∞)|γ 〉|0〉 +
√

1 − |χ ′(∞)|2|0〉|env〉), (16)
4 Very similar results to these are obtained if total variance [47, 48] is used as an entanglement measure.
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and χ ′(∞) is real. The state |
K〉 = χ ′(∞)|γ 〉|0〉+
√

1 − |χ ′(∞)|2|0〉|env〉 is then analogous
to a pair of coupled two-state systems, in direct correspondence with the atom–photon pairs
(equation (6)) of the JC model in the single excitation limit. In this case, the probability
amplitudes are no longer time dependent but depend on choice of partitioning k ∈ K . Setting
χ ′(∞)(1) = χ ′(∞)(2) = χ ′, we find that the reduced density matrix of the collective states∣∣
K(1)

〉 ⊗ ∣∣
K(2)

〉
is of the X-form [13]. To observe entanglement between collective photon

modes (given a fragile state), the system must satisfy

|χ ′|2 =
∑

k∈K1,K2

|λk(∞)|2(1)|λk(∞)|2(2)

� 1 − cot θ, π/4 � θ � π/2, (17)

which is not a function of time, but of partitioning of the system/environment. This partitioning
is parameterized by |χ ′|2, the probability of observing the system in a collective mode (as
opposed to an environmental mode). As we include more states in the environmental modes,
rather than the collective modes, eventually a sharp threshold is reached and entanglement can
no longer be supported between these collective modes (given a fragile initial state).

To obtain a physical interpretation, we consider the output spectrum from a spontaneously
emitting atom in the far field. The spectrum is given by [24]

S(ν) = �

π

1

(E − ν)2 + �2
(18)

where integrating over all frequencies equals 1. The probability of emitting a photon of
frequency E − �ν � ν � E + �ν is given by the definite integral:

p2�ν =
∫ E+�ν

E−�ν

S(ν) dν = 2

π
arctan

(
�ν

�

)
. (19)

If we take the modes K(1) and K(2) to have frequencies centred about the atom frequency E
with width ±�ν, this corresponds to an effective bandwidth of interest (2�ν). Equations (19)
and (17) lead to the following inequality:

�ν

�
� tan

[π

2
(1 − cot θ)

]
, π/4 � θ � π/2, (20)

as the condition required to allow for entanglement between the two collective modes
∣∣γK(1)

〉
and

∣∣γK(2)

〉
. This makes physical sense, as the faster the decoherence, the more broad the

spectral response and the more ‘classical’ the emitted light. What is most interesting is that
this process has a finite cutoff in partitioning, where entanglement goes abruptly to zero. This
is consistent with the interpretation of ESD resulting from Hamiltonian evolution between
states with different entanglement visibilities, given a certain partitioning which is fixed in
time. We can therefore consider these two cases as related (but not equivalent), in that either
Hamiltonian evolution with fixed boundaries or moving boundaries without evolution can
result in bipartite entanglement reaching zero abruptly in a closed system.

7. Conclusion

Rather than considering entanglement sudden death (or birth) as a purely decoherence-induced
effect, it is useful conceptually to treat it as a result of Hamiltonian evolution between
entanglement classes of the larger system. It is only when this larger system is traced
over that the visibility of the multipartitie entanglement to bipartite entanglement measures
results in entanglement sudden death for the reduced bipartite system. This process is a direct
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consequence of the inequivalence of entanglement and quantum correlations as a measure of
the ‘quantumness’ of a state.

Using these concepts, we have shown the correspondence between the two most common
examples of ESD as well as the fact that ESD can occur as a function of the choice of system
partitioning, independent of time. Furthermore, considering the multipartite generalization of
concurrence allows us to define an entanglement invariant for both examples. In contrast, the
hierarchy of geometric entanglement and quantum discord provides a more general measure of
the quantum correlations of the system and therefore does not predict ESD. The phenomenon
of ESD depends directly on both how the system is partitioned and whether one is interested
in quantum entanglement or simply quantum correlations.
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